Skip to main content

in this section

Charles Eugene Seyler

ces7-profile.jpg
  • Charles Eugene Seyler
  • Dept: Electrical and Computer Engineering
  • Title: Professor
  • Address: Room 322 Frank H T Rhodes Hall
  • Phone: 607 255-4967
  • return to list

Biography

Upon completion of his Ph.D. in plasma physics, Seyler held a post-doctoral position for two years at the Courant Institute of Mathematical Sciences at New York University working in fusion-related plasma physics. In 1978 he began work at Los Alamos National Laboratory as a research scientist in the controlled-fusion theory group. In 1981 he accepted a position in the School of Electrical Engineering at Cornell. While at Cornell Professor Seyler's research focus has been in plasma theory and simulation with specializations in space plasma physics and High Energy Density Physics. He is currently engaged in plasma simulation applied to the Cornell pulsed power experimental program.

Research Interests

The state of matter called high energy density (HED) plasma occurs when the energy density is of the order of 1011 J/m3. Attainment of this state is required to achieve nuclear fusion in a number of schemes based on inertial confinement. Our very limited current understanding of the dynamics of HED plasmas is mostly derived from numerical simulations. However, the vast amount of physics, large dynamical range of density and pressures, and the widely separated spatial and temporal scales creates a very challenging computational problem. Further progress is dependent on advancement of numerical methods capable of meeting these challenges. While there has been a great deal of success in addressing the modeling and computation of many of the physical process underlying HED plasmas, the simulation of phenomena that are dependent on short space and time scales remain largely unexplored. My current research is simulating HED plasmas with applications to fusion and designing computational algorithmic solutions to address some computational challenges concerning issues associated with short space-time scales. The code PERSEUS developed by my group is an extended-magnetohydrodynamic code that is capable of resolving physical processes dependent on short space and time scales without the great computational expense incurred by other methods. The simulation effort in my group is closely associated with HED Plasma experiments performed on the COBRA accelerator. The experiments have provided strong support for the validity of our computational approach.

Teaching Interests

Fall 2012: ECE 5820 Advanced Plasma Physics Students: 7 Credits: 4

Spring 2013 : ECE 3400 50 students 4 credits

Service Interests

Served as the Associate Dean for Undergraduate Programs in the College of Engineering 2011-2013.

Selected Publications

  • Gourdain, Pierre A., Charles Eugene Seyler. 2014. "Modeling of strongly collimated jets produced by high energy density plasmas on COBRA." Plasma Physics and Controlled Fusion.
  • Seyler, Charles Eugene, P. A. Gourdain, C. E. Seyler, L. Atoyan, J. B. Greenly, D. A. Hammer, B. R. Kusse, S. A. Pikuz, W. M. Potter, P. C. Schrafel, T. C. Shelkovenko. 2014. "The impact of Hall physics on magnetized high energy density plasma jets." Physics of Plasmas 21.
  • Dao, Eugene V., Charles Eugene Seyler, Michael Charles Kelley. 2013. "Three-dimensional modeling of the electromagnetic characteristics of equatorial plasma depletions." Journal of Geophysical Research 118: 3505-3514.
  • Gourdain, Pierre A., Charles Eugene Seyler. 2013. "The impact of the Hall effect on high energy density plasma jet." Physical Review Letters 110 (015002).
  • Seyler, Charles Eugene, P.-A. Gourdain, J. B. Greenly, D. A. Hammer, B. R. Kusse, S. A. Pikuz, C. E. Seyler, T. C. Shelkovenko, P. F. Knapp. 2012. "Magnetohydrodynamic instabilities in radial foil configuration." Physics of Plasmas 19.

Selected Awards and Honors

  • James and Mary Tien, College of Engineering award for excellence in teaching (Cornell University) 2005
  • Kenneth A. Goldman College of Engineering award for excellence in teaching (Cornell University) 2002
  • College of Engineering award for excellence in teaching (Cornell University) 1999
  • Ruth and Joseph Spira Excellence in Teaching Award (Cornell University) 1997

Education

  • BA (PHYSICS, GENL (EXCL BIOPHYS)), UNIV OF SOUTH FLORIDA, 1970
  • MA (PHYSICS, GENL (EXCL BIOPHYS)), UNIV OF SOUTH FLORIDA, 1972
  • Ph D (PHYSICS), UNIV OF IOWA, 1975