Electronics for Autonomous Construction Robots
Alberto Gutiérrez, Boling Hu
Advisor: Asst. Prof. Kirstin Petersen
School of Electrical and Computer Engineering

Summary
Updates of electronics for robots capable of autonomous collective construction [1], including:
- dsPIC33F microcontroller
- IR sensors and digital signal processing (digital filter, improved SNR ratio, fabrication time, volume)
- Wireless communication
- Motor drivers

Power Circuit
- Two 7.2V batteries power motors, IR circuits and dsPIC33F
- Buck converters generate 3.3V and 5V

Actuation
- Dual motor driver
- 2.7-5.5V logic supply
- Up to 15V motor supply
- Up to 1.2A constant current
- 3.2A stall current
- 3 Brushed DC motors
- 100:37:1 metal gearbox
- Up to 320 RPM at 6V
- 120 mA with no load
- 1.6A stall current at 6V

Wireless Communication
- Send Command to MCU
 - Sends command to XBee
 - Receives command and transmits 9 bits of data to RX module
- Send Acknowledgement to User
 - User receives the Ack
 - TX module receives Ack and sends it to user/PC

Sensing
- IR sensors for navigation
- Six pairs under robot
- PWM (DC 20%)
- Sensitive to black/white surfaces and distance
- Output voltage level increases with increase in distance
- Black surface absorbs IR light, no reflection, small output voltage

Digital Signal Processing
- FIR filter specifications:
 - Sampling frequency: 10 kHz
 - Passband frequencies: 1000 Hz, 1200 Hz
 - Stopband frequencies: 950 Hz, 1350 Hz

Printed Circuit Board Design
- Board Dimensions: 1.749 x 2.332 in. Includes IR sensors, motor drivers, dsPIC33F and XBee receiver module

References

Acknowledgements
We would like to give special thanks to our M.Eng. advisor Dr. Petersen for the invaluable help and support throughout this project.

Contacts
Alberto Gutiérrez – amg432@cornell.edu & Boling Hu – bh475@cornell.edu
Professor Kirstin Petersen – kirsting@cornell.edu